Full Length Research Paper

Rapid progression to human immunodeficiency virus infection / acquired immunodeficiency syndrome (HIV/AIDS) correlates with variation in viral ‘tat’ sequences

Mary Bridget Nanteza2, David Yirrell1,5, Benon Biryahwaho2, Natasha Larke3, Emily Webb3, Frances Gotch4 and Pontiano Kaleebu1,2

1MRC/UVRI Uganda Research Unit on AIDS, c/o Uganda Virus Research Institute, Plot 51-59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda.
2Uganda Virus Research Institute, Plot 51-59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda.
3MRC Tropical Epidemiology group, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom.
4Department of Immunology, Imperial College, Chelsea and Westminster Hospital 369 Fulham Rd, London SW10 9NH, United Kingdom.
5Department of Medical Microbiology, Ninewells Hospital, Dundee, DD1 9SY United Kingdom.

Accepted 3 August, 2013

Gene sequence diversity plays an important function in determining survival of micro-organisms. Pathogenicity of HIV is correlated to host as well as viral factors. We aimed to identify sequence variations in tat, nef and the membrane-proximal gp41. These genes regulate important viral functions: tat for trans-activation, nef for enhancing infectivity and the membrane-proximal gp41 for fusion which could correlate with HIV disease progression. We studied HIV sequences from ART naïve adult Ugandans. Sequence diversity was analysed for 19 rapid progressors and 22 long-term survivors, Rapid progressors were individuals who progressed to a CD4 count of <200 cells/µl in a median time of 3.7 (range 1.3 to 4.9) years. The median time is calculated as being from mid-way between the last HIV sero-negative result and the index HIV sero-positive result, to the time of obtaining the study blood sample. Long-term survivors were individuals who had a CD4 count of >500 cells/µl after a median time of 8.8 (range 7.5 to 9.3) years, measured from the time of the index HIV sero-positive result to the time of obtaining the study blood sample. Amplification of DNA by polymerase chain reaction (PCR) and subsequent sequencing of tat, nef and membrane-proximal gp41 was performed starting from viral DNA directly obtained from frozen uncultured peripheral blood mononuclear cells. A ‘long’ tat protein was only observed in rapid progressors (RPs). The ‘long’ tat appears to predict rapid disease progression and could be relevant for designing an HIV-1 prognostic assay.

Key words: HIV-1, progression, tat, nef, gp41.

INTRODUCTION

Disease progression among people living with human immunodeficiency virus infection/acquired immunodeficiency syndrome (HIV/AIDS) seems to be strongly associated with multiplicity of factors such as host HLA alleles and HIV-1 subtype. Genetic variation in individual viral sequence such as an insertion of two amino acids in the C-terminus of exon 2 of tat (Tzitzivacos et al., 2009) and deletions in nef were in some studies shown to correlate with slow disease progression. In gp41, low levels of antibodies to the epitope ‘ELDKWA’ have been associated with advanced HIV-1 disease (Srisurapanon et al., 2005).

The tat protein trans-activates transcription by attaching to the trans-activating responsive (TAR) element of the 5’ long terminal repeat (LTR). Studies have been performed to delineate the functional mechanisms of tat (Kuppuswamy et al., 1989, LeGuern et al., 1993). Peloponese et al.
(1999) showed that HIV strains circulating in Africa were more virulent than strains in Europe and America and was attributed to variations in the \textit{tat} protein. Furthermore, Niyasom et al. (2009) also showed that subtype B \textit{tat} activity was associated with reduced disease progression. Humoral and cytotoxic T-cell responses to \textit{tat} have also shown inverse correlation with slow and non-progressive HIV-1 disease (van Baalen et al., 1997, Zagury et al., 1998, Gupta and Mitra, 2007). However this association was not replicated in a study conducted among Ugandans (Senkaali et al., 2008). The trans-activating and immuno-responsive functions of \textit{tat} have been attributed to the cysteine-rich region (region III) and the basic region (region IV) of \textit{tat} exon 1. \textit{Tat} has also been shown to enhance HIV-1 replication.

With regard to \textit{nef}, several studies have demonstrated that \textit{nef} deleted mutants of HIV-1 and simian immunodeficiency virus (SIV) were associated with diminished viral virulence and attenuated infection however some other work did not confirm this observation (Hofmann-Lehmann et al., 2003, Chakrabarti et al., 2003). The \textit{nef} gene has been shown to exert its effect through acceleration of HIV-1 activation from latency and enhancement of viral replication. There are indications that \textit{nef} is implicated in the downregulation of CD4 and MHC class I molecules (Jin et al., 2008), and Geriach et al., 2010) thus disabling the humoral and cytotoxic responses.

Apopbec3 cytidine deaminases are antiviral proteins that inhibit the replication of HIV-1. The ‘YXXL’ motif in the membrane-proximal cytoplasmic gp41 has been identified to mediate the binding to the human Apobec3 (Pery et al., 2009). It has been hypothesised that sequence variations in the ‘YXXL’ motif could interfere in the binding of Apobec3 and result in up regulation of viral replication. Such events could subsequently result in rapid disease progression. We report on DNA sequences of \textit{tat}, \textit{nef} and membrane-proximal \textit{gp41} and attempts to correlate the variation observed to HIV-1 disease progression.

\section*{METHODOLOGY}

\subsection*{Study subjects}

This was a retrospective cross sectional study conducted among HIV-infected adults from a natural history population-based cohort maintained by the MRC/UVRI Uganda Research Unit on AIDS in Uganda (Morgan et al., 1997). Rapid progressors were individuals who progressed to a CD4 count of \(<200\) cells/µl (median 173) in a median time of 3.7 \((\text{range 1.3 to 4.9})\) years. This median time was calculated from mid-way between the last HIV sero-negative result and the index HIV sero-positive result, to the time of obtaining the study blood sample. Long-term-survivors were individuals who had a CD4 count of \(>500\) cells/µl (median 689) in a median time of 8.8 \((\text{range 7.5 to 9.3})\) years. The median time was measured from the time of the index HIV sero-positive result to the time of obtaining the study blood sample. 64\% of the long-term survivors were prevalent cases with no prior documentation of a negative result. The remainder were incident cases where the true length of infection could be documented (data not shown). The blood samples were obtained before anti-retroviral therapy (ART) was widely implemented in Uganda and participants were selected on the basis of having no previous exposure to anti-retroviral drugs. The Uganda Virus Research Institute Scientific and Ethical Committee approved the study.

\subsection*{CD4/CD8 count estimation}

CD4/CD8 lymphocytes were quantified from 50 µl of fresh ethylene diaminetetraacetic acid (EDTA) blood using flow cytometry on a fluorescence activated cell sorting (FACS) count according to the manufacturer’s instructions (Becton Dickinson International, Belgium).

\subsection*{DNA extraction}

DNA was extracted from 300 µl frozen uncultured PBMC using the Puregene kit (Gentra Systems Inc., North Carolina, USA) according to the manufacturer’s protocol.

\subsection*{DNA amplification}

We designed \textit{tat} and \textit{gp41} primers and the \textit{nef} primers were adapted from (Jubier- Maurin et al., 1999) to suit HIV-1 subtype A and D that were dominantly present in Uganda. All the \textit{tat}, \textit{gp41} and \textit{nef} primers were synthesized by Oswel DNA, Southampton, UK. For the first round PCR, 5 µl of the DNA extract (\(1.0 \times 10^6\) DNA) was added to a 15 µl reaction containing x1 PCR buffer; 200 µM of dCTP, dATP, dTTP and dGTP (Sigma, USA); 0.2 pmole outer primer pairs (\textit{tat} and \textit{nef}) or (\textit{env} and \textit{gag}) and 1.5 mM MgCl2 for (\textit{tat} and \textit{nef}) and (\textit{nef} and \textit{env}); and 1.4 mM MgCl2 for (\textit{env}) and (\textit{gag}). Finally, 0.05 U of Taq DNA polymerase was added. DNA samples were cycled: (i) 94°C (1 min), 55°C (1 min) and 72°C (1 min); for three cycles; (ii) 94°C (30 s), 55°C (45 s), 72°C (1 min); for 30 cycles; and (iii) 72°C (5 min). Two microlitres of the first round PCR product was transferred to an 18 µl secondary reaction mixture containing x1 PCR buffer; 1.4 mM MgCl2; 200 µM dCTP, dATP, dTTP and dGTP; 0.2 pmole of the inner primer pairs (\textit{tat} and \textit{nef}) or (\textit{env} and \textit{gag}) and (\textit{env} and \textit{gag}). Two microlitres of the second round PCR product was transferred to an 18 µl reaction mixture containing x1 PCR buffer; 1.4 mM MgCl2; 200 µM dCTP, dATP, dTTP and dGTP; and 0.05U of Taq DNA polymerase. Amplification was performed using the cycling conditions stated above. The details of the primers used are shown in Table 1.

\subsection*{Sequencing}

The template for sequencing was generated from a 120 x1 secondary PCR reaction containing 3 x1 of the corresponding primary PCR product. The generated product was cleaned using the QIAquick PCR Purification kit (QIAGEN, UK). A sequencing PCR reaction was carried out in a volume of 10 x1 which consisted of 1 x1 of 3.2 pmole/x1 single secondary primer; 4 x1 dRhodamine deoxy terminator mix (Applied Biosystems, Warrington, UK); and 5 x1 of cleaned PCR product. The mixture was subjected to thermal cycling.
at 90°C (30 s), 50°C (15 s), and 60°C (4 min) for 25 cycles. The product was precipitated with ethanol and sequenced on an ABI 373A automated sequencer according to the manufacturer’s instructions.

Sequence analysis

Sequences from each region were separately aligned with homologous regions from consensus HIV-1 strains D and A obtained from the Los Alamos database [http://hiv-web.lanl.gov] using version 2.2 of the Genetic Data Environment [GDE] package (Smith et al., 1994). Neighbour joining phylogenetic trees for each region were generated using the PHYLIP set of computer programs (Felsenstein et al., 2003) implemented through the Treecon package (Van de Peer et al., 1994) employing a Kimura distance matrix (Kimura, 1980). The nucleotide sequences were submitted to the Genbank; *tat* exon 1 AF425936 – AF425974, *nef* AF425870 – AF425900 and gp41 AF425901 – AF425935.

Statistical analysis

The frequencies of residues at each amino acid position were compared between RPs and long term survivors (LTSs) in an alignment with the corresponding consensus subtypes D and A using a Chi squared test. The crude association between presence/absence of the long *tat* and clinical outcome (RP vs. LTS) was evaluated using a Chi square test. To allow for the large number of statistical tests and correlations between positions, p-values adjusted for multiple testing were also calculated using an empirical permutation procedure with 100,000 iterations (Churchill and Doerge, 1994). To investigate the possibility that predictor residues could be specific for subtype, frequencies of residues at each position were examined separately by subtype; however formal statistical analyses were not undertaken because this was among a small sample size. Nevertheless several crude p values were found and evidence of an association at p<0.05 was provided, many of the adjusted p values were considerably larger, this was as a consequence of adjusting for the multiple statistical tests conducted in a small sample size. All analyses were carried out in Stata 10.

RESULTS

We found major and minor sequence variations affecting the three target HIV-1 genes.

The ‘long’ *tat* was only found in RPs;

Tat sequence variations were observed in *tat* exons 1 and 2. A major variation was found in exon 2; the ‘long’ *tat* (115+ amino acids) was only found in RPs (seven out of 18 RPs, 36.8% compared to 0 out of 14 LTSs, 0%) whereas both leucine (L) (79%) and isoleucine (I) (21%) were found in RPs (crude p = 0.034 adjusted p = 0.351)

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Primer location on HXB2</th>
<th>Primer sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tat1</td>
<td>5711-5730 outer</td>
<td>5’GGATACYTGGGAGGAGTTG 3’</td>
</tr>
<tr>
<td>Tat2</td>
<td>6227-6207 ‘’</td>
<td>5’CATTGCCACTGTTCTCTGC 3’</td>
</tr>
<tr>
<td>Tat3</td>
<td>5775-5795 inner</td>
<td>5’CAGAATTGGGTGYCWCATAG 3’</td>
</tr>
<tr>
<td>Tat4</td>
<td>6137-6116 ‘’</td>
<td>5’CTATRGTCCACACAATCATTGC 3’</td>
</tr>
<tr>
<td>EnvVII</td>
<td>7932-7952outer</td>
<td>5’GTCTGGGGCAATTAACAGCTC 3’</td>
</tr>
<tr>
<td>EnvVIII</td>
<td>8782-8761 ‘’</td>
<td>5’CTTCTAAGGCGGTGTGATTAC 3’</td>
</tr>
<tr>
<td>EnvV</td>
<td>8004-8032 inner</td>
<td>5’GGAAATGGGGCTGTCGTGC 3’</td>
</tr>
<tr>
<td>EnvVI</td>
<td>8707-8686 ‘’</td>
<td>5’CTATCTRTCCMCYACGCTACTG 3’</td>
</tr>
<tr>
<td>EnvVII</td>
<td>8537-8516 ‘’</td>
<td>5’CAAAYGTTGTAGCTGAAGGG 3’</td>
</tr>
<tr>
<td>Nef1</td>
<td>8513-8533 outer</td>
<td>5’GTGCCTCCTTCAGCTACCCG 3’</td>
</tr>
<tr>
<td>Nef2</td>
<td>9508-9484 ‘’</td>
<td>5’AGCATCTGAGGGYTAGCCACT 3’</td>
</tr>
<tr>
<td>Nef3</td>
<td>8696-8717 inner</td>
<td>5’GKGAYAGTATAGGGYGATAGAA 3’</td>
</tr>
<tr>
<td>Nef4</td>
<td>9467-9448 ‘’</td>
<td>5’CRCTCCCTGGAAGGTCC 3’</td>
</tr>
</tbody>
</table>

The second exon of *tat* from a different reading frame in gp41 was added to the first exon.

Table 1. Details of primers used.
Among the “short” forms of tat, serine (S) at position 75, arginine (R) at position 79, and lysine (K) at position 86 were perfectly conserved in all LTSs and the amino acid residue at these positions was the same as the consensus subtype D sequence (Figure 2B). A neighbour joining phylogenetic tree for the tat exon 1 sequences is shown in Figure 3. Eight of the study isolates clustered with reference strains subtype A. Six were RPs and two were LTSs. Twenty-six (26) clustered with reference strains subtype D. Nine were RPs and 17 were LTSs. Five study isolates did not identify with specific reference strains. These were 19RP, 04RP, 12RP, 14RP and 15LTS.

Nef sequence variation

The nef region exhibited a minor sequence variation at the protein kinase C binding site (data not shown). The alanine residue in the protein kinase C binding site of nef 102’PMTYKAA’108 was more common in RPs (56%) than LTSs (15%) whereas glycine (G) at the same site was more common in LTSs (85%) than RPs (44%) (crude p=0.023, adjusted p=0.381). A similar pattern was shown by Walker et al. (2007).

Gp41 sequence variation

The epitope ‘55NWFS’--‘LW64’ of the membrane-proximal external region (MPER) for gp41 neutralizing antibody ‘4E10’ showed a minor sequence variation (data not shown). The serine residue within the epitope was more common in LTSs (76.5%) than RPs (27.8%) whereas aspartic acid (D) was more common in RPs (38.9%) than LTSs (17.6%) (crude p = 0.038, adjusted p = 0.502). The ‘96YXXL99’ of the membrane-proximal cytoplasmic gp41 was conserved in the RPs and LTSs.

DISCUSSION

Campbell et al. (2004) performed a functional study on two subtype D sequences from our study population 05RP and 11LTS. A short alpha helix was observed in tat 05RP. Tat from 05RP was more efficient than tat from 11LTS in the trans-activation function. The differences between 05RP and 11LTS were the minor sequence variations at positions 8 and 63 of tat exon 1. Position 8 in the acidic region of tat exon 1 was quite conserved among the subtype A and D isolates however it exhibited sequence variation with the isoleucine residue among the rapid progressors. The acidic region is a domain for the neutralization antibody epitope of tat (Sneham et al., 2012). Sequence variation at position 8 might represent neutralization escape mutants for the subtype A isolates. Position 63 is located in the glutamine rich region. The glutamic rich region is a vital domain and plays a role in tat mediated apoptosis of the T-cells. Sequence variation in this domain may affect the rate of disease progression. In this study, the proline residue at position 63 was found among the RPs. This might play a role in enhancing tat mediated apoptosis of the T-cells and thus disease progression.

Position 79 of tat exon 2 is part of the ‘79RGD80’ motif of tat exon 2 that is involved in cellular adhesion, uptake of extracellular tat, apoptosis and enhancing HIV replication. The ‘RGD’ motif enhances the adhesion of the extracellular tat via the α5β2 and α5Tβ integrins. Extracellular tat stimulates the HIV LTR and results in the up regulation of the transcriptional process. Sequence variations at this site might therefore have various effects. Variations could down regulate or up regulate the transcription process resulting in slow or rapid disease progression. The subtype A isolates exhibited sequence variation at position 79 tat exon 2. Position 79 contained the glutamine residue ‘79Q/R’ among the RPs. The variation could not
Tat Amino acid sequence for subtype A study isolates in RPs and LTSs

A

<table>
<thead>
<tr>
<th>Acids region</th>
<th>Cysteine rich</th>
<th>Core region</th>
<th>Basic glutamine</th>
<th>Cell adhesion C-terminal region</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>21</td>
<td>31</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>61</td>
<td>71</td>
<td>81</td>
</tr>
<tr>
<td>CONSENSUS A1</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03RP.A</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07RP.A</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11RP.A</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13RP.A</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15RP.A</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01LTS.A</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05LTS.A</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15LTS.?</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Regions:

- Region I
- Region II
- Region III
- Region IV
- Region V
- Region VI

B

Tat Amino acid sequence for subtype D study isolates in RPs and LTSs

<table>
<thead>
<tr>
<th>Acids region</th>
<th>Cysteine rich</th>
<th>Core region</th>
<th>Basic glutamine</th>
<th>Cell adhesion C-terminal region</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONSENSUS D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03RP.D</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07RP.D</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11RP.D</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13RP.D</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01LTS.D</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05LTS.D</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15LTS.??</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Regions:

- Region I
- Region II
- Region III
- Region IV
- Region V
- Region VI

Figure 2. The amino acid alignments of tat sequences from RPs and LTSs of HIV-1 infection. The three published consensus sequences A1, A2 and D were obtained from the Los Alamos National Laboratory. The (.), denotes same identity with the respective consensus sequence; (;), deletion; (x), sequence residue was not clear; the letters underlined represent residue positions of potential importance to HIV-1 disease progression; letters in bold within the consensus represent the amino acid sequences of the cell adhesion signal motif of tat and the 'long' tat; (?), sequence that could not be classified into a subtype and (*), is a stop codon.
Figure 3. The phylogenetic tree of the first exon of TAT.
be studied in LTS because of the small sample size and short sequences. The 'long' tat was exclusively found in RPs in subtype A sequences. There was some suggestion that those residues with higher frequency in the sequences of RPs were likely to coexist with the 'long' tat in subtype A although this could not be formally evaluated due to the small study numbers. Tat exon 2 has been shown to improve the trans-activation process and induce HIV-1 pathogenic events (Lopez-Huertas et al., 2010). Thus variations within tat exon 2 could improve trans-activation function and contribute to disease progression. Although the cysteine-rich and basic regions have been reported to be critical for tat function, functional studies of the 'long' and 'short' tat are required to understand better the role of the length of tat in disease progression. Future comparative studies using samples from European and American subjects could also give more insight on tat length and disease progression although the wide spread use of antiretroviral therapy makes this difficult.

CONCLUSION

In this study, the 'long' tat was associated with rapid HIV-1 disease progression. The 'long' tat could be a template for developing a prognostic screening assay as well as a therapeutic target for HIV disease control.

ACKNOWLEDGEMENTS

The study was funded by Rogers Research Fellowship through MRC/UVRI Uganda Research Unit on AIDS in Uganda. We are very grateful to Dr. Nicaise Ndembí for his useful comments, the MRC/UVRI Uganda Research Unit on AIDS in Uganda for its full support, and the 'Study Participants’ who willingly donated blood and made it possible to perform this study.

CONFLICT OF INTERESTS: The authors have declared that no conflict of interest exists.

REFERENCES

frequencies inversely correlate with rapid progression to AIDS. J. Gen. Virol. 78:1913-1918.

