
International Journal of Malaria and Tropical Diseases ISSN 2953-2108 Vol.  1 (12), pp. 063-071, December, 
2017. Available online at www.advancedscholarsjournals.org © Advanced Scholars Journals 

 
 
 
 
 

Full Length Research Paper 

 

Effects of drug resistance in malaria transmission and 
its most favorable control analysis 

 
*Steve Rhodes Tambo, Gary M. Botha and Jacob R. Makeba 

 
Institute for Advance Research in Mathematical Modelling and Computations, Cape Peninsula University of Technology, 

P. O. Box 1906, Bellville 7535, South Africa. 
 

Accepted 15 October, 2017 
 

We derive and analyse a deterministic model for the transmission of malaria disease with drug 
resistance in the infectives. Firstly, we calculate the basic reproduction number, R, and investigate the 
existence and stability of equilibria. The system is found to exhibit backward bifurcation, with this 
occurrence, the classical epidemiological requirement for effective eradication of malaria, R < 1, is no 
longer sufficient, even though necessary. Secondly, by using optimal control theory, we derive the 
conditions for optimal control of the disease using Pontryagin’s Maximum Principle. Finally, numerical 
simulations are performed to illustrate the analytical results. 
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INTRODUCTION 

 
Malaria is a public health problem in more than 90 
countries, caused by parasites that are transmitted to 
people through the bites of infected mosquitoes, which 
resulted in the death of a child from malaria every 30 s. 
There are 247 million cases of malaria in 2006, causing 
nearly 1 million deaths, mostly among African children. 
This is estimated to be well over 2,000 young lives lost 
daily across the globe. These estimates render malaria 
the pre-eminent tropical parasitic disease and one of the 
top three killers among communicable disease (Sachs, 
2002).  

There are strong social and economic ways to the 
burden of the disease, which in so many ways affects 
fertility, population growth, saving and investment, worker 
productivity, absenteeism, premature mortality and 
medical costs (Sachs, 2002). In areas where malaria is 
highly endemic, young children bears a larger burden in 
terms of the disease morbidity and mortality and affects 
fetal development during early stage of pregnancy in 
women due to loss of immunity. Currently, strategies of  
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controlling the disease includes, the use of chemo-
therapy, intermittent preventive treatment for children and 
pregnant women (preventive doses of sulfadoxine-
pyrimethamine (IPT/ST)), and use of insecticides treated 
bed nets and insecticides against the vector. The 
challenge posed by the resistance of parasites against 
drugs and resistance of mosquitoes against insecticides 
calls for urgent need for a better understanding of 
important parameters in the disease transmission and 
develops effective and optimal strategies for prevention 
and control of the spread of malaria disease.  

Mathematical modeling of the spread of infectious 
diseases continues to provide important insights into 
diseases behaviour and control. Over the years, it has 
also become an important tool in understanding the 
dynamics of diseases and in decision making processes 
regarding intervention programs for controlling these 
diseases in many countries. Greenhalgh (1992) studied 
an infectious disease model with population-dependent 
death rate using computer simulation. Ghosh et al. 
(2004), studied the environmental effect on a suscept-
ible/infected/susceptible (SIS) model for bacteria and the 
spread of carrier-dependent infectious diseases, like 
cholera, diarrhoea. Elsady (2008) studied the Mathe-
matical effect of improving the function of the thymus on 
the viral growth and T cell population of an HIV-immune 
dynamic system. 
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Figure 1. The flow diagram for malaria disease transmission. 

 

 

Anderson and May (1991) derived a malaria model with 
the assumption that acquired immunity in malaria is 
independent of exposure duration, different control 
measures and role of transmission rate on the disease 
prevalence were further examined. Puntani and I-ming 
(2010) studied the transmission of Plasmodium 
falciparum and Plasmodium vivax malaria in a mixed 
population of Thais and migrant Burmese living along the 
Thai-Myanmar border using a mathematical model. Hyun 
(2000), using mass action incidence studied malaria 
transmission model for different levels of acquired 
immunity and temperature dependent parameters, 
relating also to global warming and local socioeconomic 
conditions. Isao et al. (2004) examined the combined use 
of insecticide spray and zooprophylaxis as malaria control 
strategy. Dietz et al. (1974) proposed a model that 
account for acquired immunity in a mass action model. 
Jia (2008) formulated and examined a compartmental 
mathematical model for malaria transmission that 
includes incubation periods for both infected human hosts 
and mosquitoes (Figure 1).  

In particular, there have been studies of epidemiological 

 
 

 

models where optimal control methods were applied. 
Okuonghae and Aihie (2010) applied optimal control 
theory to a system of ordinary differential equations 
modeling the population dynamics of tuberculosis with 
isolation and immigration of infective. Castilho (2006) 
specifically applied optimal control methods in a simplified 
susceptible-infective-removed (SIR) model, to study the 
best strategy for educational campaigns during the 
outbreak of an epidemic. Zaman et al. (2008) studied a 
general SIR epidemic model and applied stability analysis 
theory to investigate the equilibrium solutions and then 
used optimal control to determine the optimal vaccination 
strategies to reduce the susceptible and infective 
individuals. Suresh (1978) formulated and analy-zed an 
optimal control problem with a simple epidemic model to 
examine effect of a quarantine program. He also 
considered an optimal control problem to study the effect 
of the level of medical program effort in minimizing the 
social and medical costs.  

Gupta and Rink (1973) considered the application of 
optimal control to investigate the most economical use of 
active and passive immunization in controlling infectious 
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Figure 2. Simulations of the malaria model showing the effect of drug resistance on malaria spread. The red lines indicates 
the stable regions of the equilibrium while the blue lines shows the unstable equilibrium points. (a) for p < 0.3 and u2 = 0.6. 

(b) for u2 = 0 and p =0.0065 an endemic equilibrium exists for all positive values of the reproductive number R, whenever 

there is no effective treatment in the presence of drug resistance number and in(c), p ≥ 0.5 and u2 = 0.6. 
 

 

disease. Xiefei et al. (2007) applied optimal control met-
hods to study the outbreak of severe acute respiratory 
syndrome (SARS) using Pontryagin’s Maximum Principle 
and genetic algorithm. Marco and Takashi (2001) used 
optimal control to study dengue disease transmission.  

Rafikov et al. (2009) formulated a continuous model for 
malaria vector control with the aim of studying how 
genetically modified mosquitoes should be introduced in 
the environment using optimal control problem strategies. 
Kbenesh et al. (2009) presented an autonomous ordinary 
differential equation model with vector-control and 
treatment model and a time dependent counter part of the 
model involving an optimal control of vector-borne 
diseases with treatment and prevention as control mea-
sures. Okosun (2010) and Okosun et al. (2011) applied 
optimal control theory to a continuous malaria model that 
includes treatment and vaccination with waning immunity 
to study the impact of a possible vaccination with 
treatment strategies in controlling the spread of malaria. 

 
 

 

Makinde and Okosun (2011) presented impact of optimal 
control strategies on malaria spread with infective 
immigrants. All these work did not consider the drug 
resistance problem.  

The model we consider in this paper differs from that of 
previous work because it incorporates a time dependent 
control measures and the class of drug resistance 
individuals into the population. The main question to be 
addressed is know to what level is drug resistance 
influencing disease spreading and also informs control 
and eradication process. In this study, we derive and 
analyse a malaria disease transmission mathematical 
model with drug resistant individuals (Figure 2). We study 
and determine the possible impact of optimal treatment 
and control of drug resistance on the spread of malaria. 
Theoretically, we analyze its stability properties and 
determine conditions on the parameters for the existence 
of equilibrium solutions. We also carried out detailed 
qualitative optimal control analysis of the resulting model 
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and we find the necessary conditions for optimal control 
of the disease using Pontryagin’s Maximum Principle in 
order to determine optimal strategies for controlling the 
spread of the disease. 
 

Our main goal is to develop mathematical model with 
individuals with drug resistance in order to investigate the 
role of drug resistance individuals in malaria trans-
mission. 
 

 

MODEL FORMULATION 
 

The model sub-divides the total human population, denoted by N H , into 

sub-populations of susceptible individuals ( SH ), those exposed to 

malaria parasite ( EH ), individuals with malaria symptoms ( IH ), 

individuals with drug resistance symptoms ( IDH ) and recovered human 

( RH ). So that NH = SH + EH + IH + IDH + RH . 
 

The total vector (mosquito) population, denoted by NV , is sub-

divided into susceptible mosquitoes ( SV ), mosquitoes exposed to 

the malaria parasite ( EV ) and infectious mosquitoes ( IV ). Thus, 
 

NV  = SV  + EV + IV . 
 

Susceptible individuals are recruited at a rate ΛH , susceptible 

individuals acquires malaria through contact with infectious 

mosquitoes at a rate βM . Exposed individuals move to the 
 

infectious class at a rate  α1 . Individuals with malaria are treated 
under control, at a rate , where τ is drug efficacy and B 

 

are individuals who recovered spontaneously. A proportion of infectious 

individuals, ρτ , without drug resistance moves to the 
 

recovered class, while progresses to individuals with drug 
 

resistance class. Individuals with drug resistance recover at a rate σ . Non treated 

infected individuals die at a rate ψ . Recovered 

individual loose  immunity  at a  rate κ and  become  susceptible  

again.  H   is the natural death rate.  

Susceptible  mosquitoes  ( SV )  are  generated  at a  rate ΛV and 
 

acquire malaria through contacts with infected humans at a rate λV . 
 
Mosquitoes are assumed to suffer death due to natural causes and 
various control measures (insecticides, destruction of mosquitoes  

breeding sites, etc.) at a rate V . Newly-infected mosquitoes move 

to the exposed class ( E  ), and progress to the class of symptomatic 
 

     V           
 

mosquitoes ( IV ) at a rateα2 . Where       
 

β M     

   βεφ I V         
 

S H   E H   I H   I DH    R H   ,   
 

λV    
  λεφ ( I H  η I DH   )       

 

S H  E H  I H  I 
DH  R H  where βis the 

 

          
 

transmission probability per bite, ε is the  per  capita biting rate of 
 

 

 

 

 

 

mosquitoes and φ is the contact rate of vector per human per unit 
 

time and λ is the probability for a vector to get infected by an 

infectious human. The resulting system of equation is shown as 

follows:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The SEIR malaria model (1) will be analyzed in a biologically-
feasible region as follows. This region should be feasible for both 
humans and mosquitoes populations. More precisely, we have 
Theorem 1. 

 

Theorem 1  

 

If are 
b non negative then so are  
 

and  
 

for all time t > 0. Moreover  

 

 

(1)  

 

Furthermore, if then and  if  
 

then . The feasible region for 
system (1) is therefore given by  

 

(2) 
 

Where  

 

 

 

 

 

(4) 

 (1− ρ)τ 

 
τ U 2  (T ) 
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and Existence of endemic equilibrium  
 

Calculating the endemic equilibrium point, we obtain  
 

(5) 
 
D is positively invariant 

 

Stability of the disease free equilibrium (DFE) 
 
The DFE of the malaria Model (1) exists and is given by  
 
 
 

 

The basic reproduction number of the Model (1), R is calculated by  
using the next generation matrix Driesshe and Watmough (2002). It  
is given by;  
 
 
 

 
(6) 

 
The DFE is locally asymptotically stable if R < 1 and unstable if R >  
1.  

(7) 
 

The endemic equilibrium is βm = 0 or  
 

 
(8) 

 
where  
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The malaria model has: 

 
THEOREM  2 
 
1. A unique endemic equilibrium if C < 0, it implies that R > 1 

2. A unique endemic equilibrium if B < 0 and C = 0 or B
2
  - 4AC = 0 

3. Two endemic equilibrium if C > 0, B < 0 and B
2
  - 4AC > 0 

4. No endemic equilibrium otherwise. 
 
The item (3) indicates the possibility of backward bifurcation in the 
model (1) when R < 1. This backward bifurcation is illustrated using 
a set of parameters values in Table 1. The result obtained is 
depicted in Figure 2.  

Subsequently, we apply optimal control method using 
Pontryagin’s Maximum Principle to determine the necessary 
conditions for the optimal control of the impact of drug resistance on 
malaria disease. 

 
ANALYSIS OF OPTIMAL CONTROL 
 
To investigate the optimal level of efforts that would be needed to  
control the disease, we give the objective functional J , which is to 

minimize the number of human infective and the cost of applying 

the control ρ , U 2 .  
 

 
(9) 

 

where N , C , D are positive weights. We choose a quadractic cost 
on the controls, this is similar with what is in other literature on 
epidemic controls (Zaman et al., 2008; Marco and Takashi, 2001; 
Kbenesh et al., 2009; Rafikov et al., 2009). With the given objective 

function J ( ρ , U 2 ) ; our goal is to minimize the number of infected 
 

humans I 
H ( T ) ,  while  minimizing the cost  of  control ρ (T )   and 

 

      
 

U 2  (T ) . We seek an optimal control  ρ 
*
   and U 

*
2    such that  

 
   (10) 

where    U   ( ρ , U 2 ) such that ρ , U 2measurable   with 

0  ≤  ρ  ≤ 1 and  0  ≤  U 2 ≤ 1 for T  ∈ [ 0 , T F ] is the control set. The 
 
necessary conditions that an optimal must satisfy come from the 

Pontryagin’s Maximum Principle (Pontryagin, 1962). This principle 

converts Equations (1) to (9) into a problem of minimizing pointwise  

a Hamiltonian  H  , with respect to  ρ and U 2  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(11) 

 
 
 
 

 

where and  

 are the adjoint variables or co-state variables. By applying 
Pontryagin’s maximum principle (Pontryagin et al., 1962) and the 
existence result for the optimal control from Fleming and Rishel 
(1975), we obtain. 

 

Proposition 1  
 
 
For the optimal control pair that minimizes  
 

over . The there exist adjoint variables  
 

satisfying 12) and with 
transversality conditions  
 
 

 

(13)  
 
 
 
 

 
(14) 

 
PROOF 

 
Corollary 4.1 of Fleming and Rishel (1975) gives the existence of an 
optimal control due to the convexity of the integrand of J with 

respect to ρ , U 2  , a priori boundedness of the state solutions, and 
 
the Lipschitz property of the state system with respect to the state 
variables. The differential equations governing the adjoint variables 
are obtained by differentiation of the Hamiltonian function, 
evaluated at the optimal control. By standard control arguments 
involving the bounds on the controls, we conclude  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where  
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Table 1. Description of bvariable and parameters of malaria model (1).  

 
Baseline parameter Description Estimated value References   

β 
 

λ 
 

H 
 

V 
 

Λ H 

  
Probability of human getting infected 
 
Probability of a mosquito getting infected 
 
Natural death rate in humans 
 
Natural death rate in mosquitoes 
 
Human recruitment rate 

  
 

0.8333 Assumed 

0.09 Kbenesh et al. (2009) 

0.00004 day
-1

 Nakul et al. (2006) 

0.1429 day
-1

 Nakul et al. (2006) 

100 day
-1

 Kbenesh et al. (2009) 
  

Λ V 

ε 

φ 

ψ 
 

α 1 

α 2 

τ 

κ 

  
Mosquitoes birth rate 
 
Contact rate of vector per human per unit time 
 
Biting rate of vector per human per unit time 
 
Disease induced death rate 
 
Progression from exposed to infected human 

Progression from exposed to infected mosquito 

Drug efficacy  
Recovered individuals' loss of immunity  

 
1000 day

-1
 

 

0.6 day
-1

 
 

0.2 
 
0.05day

-1
 -

1 
 

-1
 

 
0.01 - 0.7 

-1 

  
Kbenesh et al. (2009) 
 
Nakul et al. (2006) 
 
Kbenesh et al. (2009) 
 

 
Kbenesh et al. (2009) 
 
Kbenesh et al. (2009) 
 
Assumed  
Kbenesh et al. (2009) 
 

 

 
Due to the a priori boundedness of the state system, adjoint system 
and the resulting Lipschitz structure of the ODEs, we obtain the 
 
uniqueness of the optimal control for small  T F   . The uniqueness of 
 
the optimal control follows from the uniqueness of the optimality 
system, which consists of (12) and (13) with characterization (14). 
There is a restriction on the length of time interval in order to 
guarantee the uniqueness of the optimality system. This smallness 
restriction of the length on the time is due to the opposite time 
orientations of (12) and (13); the state problem has initial values 
and the adjoint problem has final values. This restriction is very 
common in control problems (Zaman et al., 2008; Kbenesh et al., 
2009). 
 

 

NUMERICAL RESULTS AND DISCUSSION 

 
Here, we study numerically an optimal transmission 
parameter control for the malaria model. The optimal 
control is obtained by solving the optimality system, 
consisting state system and adjoint system. An iterative 
scheme is used for solving the optimality system. We 
start to solve the state equations with a guess for the 
controls over the simulated time using fourth order 
Runge-Kutta scheme. Because of the transversality 
conditions (13), the adjoint equations are solved by a 
backward fourth order Runge-Kutta scheme using the 
current iterations solutions of the state equation. Then the 
controls are updated by using a convex combination of 
the previous controls and the value from the chara-
cterizations (14). This process is repeated and iterations 
stopped if the values of the unknowns at the previous 
iterations are very close to the ones at the present 
iterations (Lenhart and Workman, 2007). We examine a 

 
 

 

deterministic model with drug resistance individuals and 
we study the effects of prevention and treatment on the 
spread of Malaria.  

We investigate and compare numerical results, with the 
following scenario, (i) when control ρ was optimized 
 

while treatment U 2 is set to zero, (ii) when treatment U 2 

was optimized while we set ρ to zero, (iii) when both 
 
controls were optimized. For the Figures 3 to 4, we 
assume that the weight factor, ( C ), associated with 
 
control U 2 is greater than ( N ) and ( D ) which are 

associated with control ρ . This assumption is based on 

the facts that the cost associated with  ρ will include the 
 
cost of screening and surveillance, and the cost  

associated with treatment, U 2  , will include the 

cost  of  
antimalarial drugs, medical examinations and 
hospitalization. We have chosen the same set of the  
weight factors,  N = 920, C = 25 and D = 50 initial state 

variables  S H  ( 0 ) =  700, E H  ( 0 ) = 25,   I H  ( 0 ) =  8, 
 

SV (0)  = 950,E V  ( 0 ) = 120,  I V  ( 0 ) = 50 to illustrate 

the 
 
effect of different optimal control strategies on the spread 
of malaria in a population. Thus, we have considered the 
spread of malaria in an endemic population. 
 
 
Optimal control of drug resistant and treatment of 
infective 
 

With this strategy,  the  control  ρ on  individuals  without 
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Figure 3. Simulations of the malaria model showing the effects of intervention strategies on 
the number of imfectious humans and drug resistant individuals for T = 0.35.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Simulations of the malaria model showing the effects of treatment on malaria 
transmission in (a) to (c), for T = 0.15, (d) shows the effect for various values of T. 



 
 
 

 

drug resistant individuals and control U 2 on treatment are 

used to optimize the objective function J . Figure 3 shows 
a significant difference in the number of infected  
humans  I H   , drug resistant individuals  I DH and 

infected 
 
mosquitoes Iv between the case with control and the 
case without. We observe in the Figures that an optimal 
control of individuals without drug resistant cases in the 
population will ensure that the community is disease free. 
 
 

 

Conclusion 

 

In this paper, we derived and analyzed a deterministic 
model for the transmission of malaria disease that 
includes the class of individuals with drug resistance and 
treatment measures. We calculated the basic 
reproduction number investigated the existence and 
stability of equilibria and performed optimal control 
analysis of the model. We found that the model exhibits 
backward bifurcation. Applying optimal control we derived 
and analyzed the conditions for optimal control of the 
disease with effective treatment regime and control of 
proportion of individuals who are drug resistant. From our 
numerical results we found that effective control of this 
proportion of individuals with drug resistance has a 
positive impact in reducing the spread of the disease. 
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